федеральное государственное автономное образовательное учреждение высшего образования

«РОССИЙСКИЙ УНИВЕРСИТЕТ ДРУЖБЫ НАРОДОВ»

Факультет физико-математических и естественных наук Специальность: Фундаментальная и прикладная химия Кафедра неорганической химии

ОТЧЕТ

о прохождении преддипломной практики

05.04.2021 - 15.05.2021

Группа: НХМмд-01-18

Студент: Симакова Е. А.

Руководитель практики:

к.х.н. доц. кафедры неорганической химии

Сафроненко М.Г.

Оценка_____

Москва 2021 г.

Содержание практики (задачи практики, вопросы, подлежащие

изучению).....

- Проведение рентгенофазового анализа синтезированных образцов.
 Изучение программ по расшифровке и обработке РФА спектров
- Исследование образцов с помощью метода инфракрасной спектроскопии соединений состава Ln₂Bi₃FeTi₃
- Рассмотрение и проведение дифференциального термического анализа синтезированных соединений

<u>1.</u> Рентгенофазовый анализ и расчет параметров кристаллических решеток

Рентгенофазовый анализ образцов $Ln_2Bi_3FeTi_3O_{15}$, отоженных при 800°С (Рис 1 а) и 900°С (Рис 1 б) показал, что все образцы являются многофазными. В составе образцов присутствуют фазы: $Bi_5FeTi_3O_{15}$, $BiFeO_3$, $Bi_2Fe_4O_9$, $Bi_{12}TiO_{20}$.

Рисунок 1. РФА-спектры образцов состава $Ln_2Bi_3FeTi_3O_{15}$, оттоженных при $T_1 = 800^{\circ}C$ (а) и $T_2 = 900^{\circ}C$ (б).

Обжиг при температуре 1000°С привел к образованию однофазных продуктов: $Ln_2Bi_3FeTi_3O_{15}$ (Ln = La, Pr, Nd, Sm, Gd) (Puc. 2 a), тогда как на рентгенограммах образцов, в составе которых присутствуют тяжелые РЗЭ (Ln = Tb, Ho, Er, Yb), интенсивные рефлексы относятся к фазе $Bi_2Ti_2O_7$, а рефлексы ферротитана висмута $Bi_5FeTi_3O_{15}$ присутствуют только в следовых количествах (Puc. 2. б).

Увеличение температуры отжига до 1100°С практически не изменяет дифракционной картины всех образцов. Исключение составил образец состава Gd₂Bi₃FeTi₃O₁₅. Если после отжига при 1000°С образец был однофазным, то увеличение температуры привело к разрушению фазы и на рентгенограмме проявились рефлексы относящиеся к Bi₂Ti₂O₇ (Puc.3). Кроме того, отжиг при 1100°С привел к образованию однофазного продукта в образце, в составе которого содержится эрбий. На образца рентгеннограмме фиксируются только рефлексы ЭТОГО Er₂Bi₃FeTi₃O₁₅ (Рис. 3).

Рисунок 2.. РФА-спектры образцов состава $Ln_2Bi_3FeTi_3O_{15}$, оттоженных при $T_3 = 1000^{\circ}C$ (а – легкие Ln, б – тяжелые Ln).

Рисунок 3. РФА-спектры образцов состава $Ln_2Bi_3FeTi_3O_{15}$, оттоженных при $T_3 = 1100^{\circ}C$ (а – легкие Ln, б – тяжелые Ln).

Таким образом, результаты рентгенофазового анализа образцов оттоженных при 1000°С и 1100°С, представлены в виде фазового состава образцов в таблице 1

Согласно приведенному фазовому анализу в образцах, содержащих тяжелые лантаноиды (Tb, Ho, Er, Yb), основной, а в случае с Er и Ho единственной, фазой является Bi₂Ti₂O₇, имеющая структурный тип пирохлора [1,2].

Таблица 1.

Фазовый состав образцов после отжига при 1000°С и 1100°С.

Формула соединения	Фазовый состав				
	1000°C	1100°C			
La ₂ Bi ₃ FeTi ₃ O ₁₅	[38-1257] Bi ₅ FeTi ₃ O ₁₅	[38-1257] Bi ₅ FeTi ₃ O ₁₅			
Pr ₂ Bi ₃ FeTi ₃ O ₁₅	[38-1257] Bi ₅ FeTi ₃ O ₁₅	[38-1257] Bi ₅ FeTi ₃ O ₁₅			

Nd ₂ Bi ₃ FeTi ₃ O ₁₅	[38-1257] Bi ₅ FeTi ₃ O ₁₅	[38-1257] Bi ₅ FeTi ₃ O ₁₅
Sm ₂ Bi ₃ FeTi ₃ O ₁₅	[38-1257] Bi ₅ FeTi ₃ O ₁₅	[38-1257] Bi ₅ FeTi ₃ O ₁₅
Gd ₂ Bi ₃ FeTi ₃ O ₁₅	[38-1257] Bi ₅ FeTi ₃ O ₁₅	[38-1257] Bi ₅ FeTi ₃ O ₁₅
	[32-118] Bi ₂ Ti ₂ O ₇ (следы)	[32-118] Bi ₂ Ti ₂ O ₇ (следы)
Tb ₂ Bi ₃ FeTi ₃ O ₁₅	[38-1257] Bi ₅ FeTi ₃ O ₁₅	[38-1257] Bi ₅ FeTi ₃ O ₁₅ (следы)
	[32-118] Bi ₂ Ti ₂ O ₇ (следы)	[32-118] Bi ₂ Ti ₂ O ₇
Ho ₂ Bi ₃ FeTi ₃ O ₁₅	[38-1257] Bi ₅ FeTi ₃ O ₁₅	[32-118] Bi ₂ Ti ₂ O ₇
	[32-118] Bi ₂ Ti ₂ O ₇ (следы)	
Er ₂ Bi ₃ FeTi ₃ O ₁₅	[38-1257] Bi ₅ FeTi ₃ O ₁₅ (следы)	[32-118] Bi ₂ Ti ₂ O ₇
	[32-118] Bi ₂ Ti ₂ O ₇ (следы)	
Yb ₂ Bi ₃ FeTi ₃ O ₁₅	[38-1257] Bi ₅ FeTi ₃ O ₁₅	[38-1257] Bi ₅ FeTi ₃ O ₁₅ (следы)
	[32-118] Ві ₂ Ті ₂ О ₇ (следы)	[32-118] Bi ₂ Ti ₂ O ₇
1		

Видимо в случае тяжелых лантаноидов возможно образование твердых растворов со структурой пирохлора так как при наличии достаточно большого количества исходных компонентов (Ln_2O_3 , TiO_2 , Fe_2O_3 и Bi_2O_3), которые при нагревании могут взаимодействовать друг с другом, образуя фазы различного состава, в числе которых могут быть фазы пирохлорного типа: $Bi_2Ti_2O_7$, $Ln_2Ti_2O_7$. Не исключено, что могут образовываться фазы и более сложного состава [3].

На рисунках 3 и 4, а также в таблице 2 представлены результаты расчетов параметров элементарной ячейки фаз со структурой слоистого перовскита и фаз пирохлора.

На графиках зависимости параметров решетки от порядкового номера лантаноида для гомогенных образцов наблюдается монотонное изменение как параметров a, b и c, так и объема ячейки (Рис. 2.20), такая же

закономерность наблюдается и для фаз пирохлора. Такое измененение ожидаемо и связано с уменьшением ионного радиуса лантаноида с ростом порядкового номера вследствие f-сжатия.

Рисунок 3. Графики зависимости параметров элементарной ячейки образцов состава $Ln_2Bi_3FeTi_3O_{15}$ от типа замещенного Ln, (Ln = La, Pr, Nd, Sm, Gd).

Рисунок 4. Графики зависимости параметров элементарной ячейки образцов состава $Ln_2Bi_3FeTi_3O_{15}$ от типа замещенного Ln, (Ln = Gd, Tb, Ho, Er, Yb).

Таблица 2.

Формула	Тип	Объём	Параметры элементарной		
соединения	решётки,	элементарной	ячейки		
	структура	ячейки			
			a	b	с
La2Bi3FeTi3O15	Ромбическая,	1212 ± 2	5,438 ±	5,422 ±	41,09 ±
	перовскит		0,003	0,004	0,02
Pr ₂ Bi ₃ FeTi ₃ O ₁₅	Ромбическая,	1201 ± 2	$5,403 \pm$	5,425 ±	$40,\!97\pm$
	перовскит		0.003	0,004	0,02
Nd ₂ Bi ₃ FeTi ₃ O ₁₅	Ромбическая,	1199 ± 2	$5,380 \pm$	5,436 ±	40,99 ±
	перовскит		0.004	0,005	0,02
Sm ₂ Bi ₃ FeTi ₃ O ₁₅	Ромбическая,	1190 ± 2	$5,399 \pm$	5,383 ±	$40,95 \pm$
	перовскит		0,003	0,004	0,02
Gd ₂ Bi ₃ FeTi ₃ O ₁₅	Ромбическая,	$1225,00 \pm 2$	5,461 ±	5,443 ±	41,22 ±
	перовскит		0,003	0,003	0,02
Gd ₂ Bi ₃ FeTi ₃ O ₁₅	Кубическая,	8785±7	20,634		
	пирохлор		$\pm 0,005$		
Tb ₂ Bi ₃ FeTi ₃ O ₁₅	Кубическая,	8719 ± 7	20.582		
	пирохлор		± 0.005		
Ho ₂ Bi ₃ FeTi ₃ O ₁₅	Кубическая,	8644 ± 8	20.523		
	пирохлор		± 0.006		
Er ₂ Bi ₃ FeTi ₃ O ₁₅	Кубическая,	8647 ± 9	20.526		
	пирохлор		± 0.007		
Yb ₂ Bi ₃ FeTi ₃ O ₁₅	Кубическая,	8548 ± 7	20.447		
	пирохлор		± 0.006		

Параметры элементарной ячейки образцов состава Bi₃Ln₂FeTi₃O₁₅

Результаты ИК-спектроскопических исследований хорошо согласуются с дифракционными исследованиями. ИК-спектры образцов $Ln_2Bi_3FeTi_3O_{15}$ (Ln = La, Pr, Nd, Sm, Gd) (Рис. 2.22), которые, согласно данным РФ, имеют

структурный тип слоистого перовскита Bi₅FeTi₃O₁₅, идентичны, что указывает на их изоструктурность.

2.Исследование образцов с помощью метода инфракрасной спектроскопии соединений состава Ln₂Bi₃FeTi₃O₁₅

Результаты ИК-спектроскопических исследований хорошо согласуются с дифракционными исследованиями. ИК-спектры образцов $Ln_2Bi_3FeTi_3O_{15}$ (Ln = La, Pr, Nd, Sm, Gd) (Рис. 5), которые, согласно данным РФ, имеют структурный тип слоистого перовскита $Bi_5FeTi_3O_{15}$, идентичны, что указывает на их изоструктурность.

Рисунок 5. ИК-спектры образцов $Ln_2Bi_3FeTi_3O_{15}$ (Ln = La, Pr, Nd, Sm, Gd).

В ИК-спектрах слоистых перовскитов фаз Ауривиллиуса область 740-820 см⁻¹, характерная для симметричных и антисимметричных колебаний апикальных и экваториальных атомов кислорода в октаэдрах MO_6 ; а область 600-200 см⁻¹ – области деформационных колебаний октаэдров пакета MO_6 и блоков $[Bi_2O_2]^{2+}$ [5]. Таким образом, в ИК-спектрах ферротитанатов висмута лантаноида полосы поглощения в диапазоне ~850-600 см⁻¹ могут быть отнесены к симметричным антисимметричным колебаниям связи Me-O в октаэдре MeO_6 (Me = Ti (IV), Fe (III)) [6].

В длинноволновой области 200-400 см⁻¹ полосы поглощения могут быть отнесены к деформационным колебаниям связи MeO в октаэдрических полиэдрах и деформационным колебаниям группировок [Bi₂O₂]²⁺.

ИК-спектры образцов, содержащих тяжелые лантаноиды (Ln = Tb, Ho, Er, Yb) (Рис. 6) по своему виду мало отличаются от ИК-спектров фаз ферротитанатов висмута лантаноида.

Рисунок 6. ИК-спектры образцов Ln₂Bi₃FeTi₃O₁₅ (Ln = Tb, Ho, Er, Yb) при 1000°С (а) и 1100°С (б).

Это объясняется тем, что практически все образцы являются двухфазными и одной из фаз является фаза слоистого перовскита, поэтому, очевидно, что характерные для этой фазы полосы поглощения должны проявляться в ИК-спектрах. Кроме того, фрагментом кристаллической структуры пирохлора также, как структуры перовскита, являются октаэдрические полиэдры MeO₆, а колебании связи Me-O в октаэдрах MeO₆ проявляются в виде полос поглощения в ИК-спектрах в диапазоне частот 550-850 см⁻¹.

В ИК-спектре гомогенного образца $Er_2Bi_3FeTi_3O_{15}$ отсутствует полоса поглощения в области 850 см⁻¹. Известно, что с ростом радиуса А в структуре пирохлора $A_2B_2O_7$ постепенно исчезает самая высокочастотная полоса. Это связано с тем, что с увеличением радиуса А-иона возрастает длина связи MeO в октаэдре, что сопровождается понижением частоты колебательных мод, обусловленных колебаниями ионов в октаэдрах MeO₆ [7].

На формирование полосы в области 540 см⁻¹ в соединениях со структурой пирохлора $A_2B_2O_7$ сильно влияет изменение атомной массы катиона В [8,9]. В ИК-спектрах, полученных нами, максимум такой полосы по значению волнового числа непостоянен и не наблюдается закономерности смещения данной полосы. Это еще раз подтверждает результаты РФА, свидетельствующие о негомогенности данных образцов, и, как следствие этого, немонотонного изменения количества катионов Ti (IV) и Fe (III) в позиции В в фазе пирохлора.

3.Рассмотрение и проведение дифференциального термического анализа синтезированных соединений

Процесс взаимодействия исходных веществ и происходящие изменения в полученных образцах изучали методом дифференциальнотермического анализа (ДТА) с использованием термоанализатора «SDT Q– 600» (TA Instruments, США) (Pt/PtRh-термопара, материал тиглей – платина) (Рис. 7)

11

Рисунок. 7. Термоанализатор TA Instruments SDT Q-600.

Анализ проводили в атмосфере воздуха в диапазоне температур 20 – 1000°С. Скорость изменения температуры составляла $\upsilon = 10^{\circ}$ /мин.

Исследование влияния катионов лантаноидов подрешётки Ві фаз LnBFT на температурах Кюри методом ДТА показало, что слоистая перовскитная структура в случае Ln = La, Pr, Nd, Sm претерпевает несколько полиморфных превращений, а фазовые переходы, выявленные в структурах пирохлорного типа Ln = Gd, Tb, Yb, Er, Ho, относятся к типу «порядок – беспорядок».

На всех кривых ДТА выявлены термические эффекты, характеризующие обратимые структурные изменения (Рис. 8). Если у фазы Bi₅FeTi₃O₁₅ сегнетоэлектрический фазовый переход проявляется при 749,6°C (при нагревании) и 740,6°C (при охлаждении), то замена 40% позиций висмута лантаном приводит к резкому повышению температуры фазового перехода: 1008°C (нагревание) и 911°C (охлаждение).

Рисунок 8. ДТА кривые образцов состава: a) Bi₃FeTi₃O₁₅; б) La₂Bi₃FeTi₃O₁₅; в) Gd₂Bi₃FeTi₃O₁₅; г) Yb₂Bi₃FeTi₃O₁₅.

Несмотря на то, что в этом образце (Ln = Yb) присутствует фаза слоистого перовскита, его содержание настолько мало, что с помощью ДТА сегнетоэлектрический переход этой фазы не фиксируется.

А Gd₂Bi₃FeTi₃O₁₅ оттоженный при 1100°С, в котором согласно РФА присутствует и фаза пирохлора и фаза слоистого перовскита, при нагревании подвергается двум структурным переходам: при более высокой температуре – сегнетоэлектрический переход перовскита, а при более низкой температуре проявляется фазовый переход пирохлора, который может быть отнесен к фазовому переходу типа порядок-беспорядок [10].

Список литературы

- Вест А. Химия твердого тела. Теория и приложения: в 2-х частях. Часть
 // Москва. «Мир». 1988. 588 с.
- Крашенникова О.В. Висмутсодержащие слоистые перовскиты. Получение, строение и физико-химические свойства. (Диссертация на соискание ученой степени кандидата химических наук). // Нижний Новгород. 2017. 136 с.
- Zhou Z. Y. Lanthanum distribution and dielectric properties of Bi_{3-x}La_xTiNbO₉ bismuth layer-structured ceramics. // Scripta Materialia. 2006.
 V. 55. PP. 791-794.
- Троянчук И.О. Магнитные свойства, ЯМР- и ИК-спектроскопии пирохлоров А₂Mn₂O₇ (A = Se, In, Tl, редкоземельный ион). // Физика твердого тела. 1992. Т. 34. № 7. С. 2129-2133.
- McCaffrey J.F., McDevitt N.T., Phillipi C.M. Infrared lattice spectra of rareearth stannate and titanate pyrochlores. // Optical Society of America. 1971. V.61. PP. 209-215.
- Кочергина Л.М., Поротников Н.В., Кондратов О.И. Анализ колебательных спектров титанатов РЗЭ со структурой пирохлора. // Журнал неорганической химии. 1983. Т.28. № 2. С. 312-318.

7. Кабиров Ю.В., Куприянов М.Ф., Чебанова Е.В.
Рентгеноструктурные фазовые переходы кислородо-октаэдрических структур.
// Журнал структурной химии. 2009. Т. 50. № 3. С. 492-496.